§4 Submersions 25

Thus $T_x(Z)$ is a subspace of the kernel that has the same dimension as the complete kernel; hence $T_x(Z)$ must be the kernel. Q.E.D.

EXERCISES

- *1. If $f: X \to Y$ is a submersion and U is an open set of X, show that f(U) is open in Y.
- (a) If X is compact and Y connected, show every submersion $f: X \to Y$ is surjective.
 - (b) Show that there exist no submersions of compact manifolds into Euclidean spaces.
 - 3. Show that the curve $t \rightarrow (t, t^2, t^3)$ embeds \mathbb{R}^1 into \mathbb{R}^3 . Find two independent functions that globally define the image. Are your functions independent on all of \mathbb{R}^3 , or just on an open neighborhood of the image?
 - 4. Prove the following extension of Partial Converse 2. Suppose that $Z \subset X \subset Y$ are manifolds, and $z \in Z$. Then there exist independent functions g_1, \ldots, g_l on a neighborhood W of z in Y such that

$$Z \cap W = \{ y \in W : g_1(y) = 0, \dots, g_l(y) = 0 \}$$

 $X \cap W = \{ y \in W : g_1(y) = 0, \dots, g_m(y) = 0 \},$

where l - m is the codimension of Z in X.

and

5. Check that 0 is the only critical value of the map $f: \mathbb{R}^3 \to \mathbb{R}^1$ defined by

$$f(x, y, z) = x^2 + y^2 - z^2$$
.

Prove that if a and b are either both positive or both negative, then $f^{-1}(a)$ and $f^{-1}(b)$ are diffeomorphic. [HINT: Consider scalar multiplication by $\sqrt{b/a}$ on \mathbb{R}^3 .] Pictorially examine the catastrophic change in the topology of $f^{-1}(c)$ as c passes through the critical value.

6. More generally, let p be any homogeneous polynomial in k-variables. Homogeneity means

$$p(tx_1,\ldots,tx_k)=t^mp(x_1,\ldots,x_k).$$

Prove that the set of points x, where p(x) = a, is a k - 1 dimensional submanifold of \mathbb{R}^k , provided that $a \neq 0$. Show that the manifolds obtained with a > 0 are all diffeomorphic, as are those with a < 0. [HINT:

Use Euler's identity for homogeneous polynomials

$$\sum_{i=1}^k x_i \frac{\partial p}{\partial x_i} = \mathbf{m} \cdot \mathbf{p}$$

to prove that 0 is the only critical value of p.]

*7. (Stack of Records Theorem.) Suppose that y is a regular value of $f: X \to Y$, where X is compact and has the same dimension as Y. Show that $f^{-1}(y)$ is a finite set $\{x_1, \ldots, x_N\}$. Prove there exists a neighborhood U of Y in Y such that $f^{-1}(U)$ is a disjoint union $V_1 \cup \cdots \cup V_N$, where V_i is an open neighborhood of x_i and f maps each V_i diffeomorphically onto U. [HINT: Pick disjoint neighborhoods W_i of x_i that are mapped diffeomorphically. Show that $f(X - \bigcup W_i)$ is compact and does not contain Y.] See Figure 1-13.

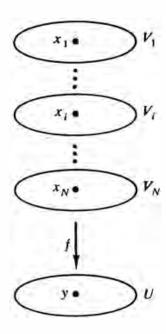


Figure 1-13

(8.) Let

$$p(z) = z^m + a_1 z^{m-1} + \cdots + a_m$$

be a polynomial with complex coefficients, and consider the associated map $z \rightarrow p(z)$ of the complex plane $C \rightarrow C$. Prove that this is a submersion except at finitely many points.

9. Show that the orthogonal group O(n) is compact. [HINT: Show that if $A = (a_{ij})$ is orthogonal, then for each i, $\sum_{j} a_{ij}^2 = 1$.]

§5 Transversality

10. Verify that the tangent space to O(n) at the identity matrix I is the vector space of skew symmetric $n \times n$ matrices—that is, matrices A satisfying $A^t = -A$.

27

- (a) The $n \times n$ matrices with determinant +1 form a group denoted SL(n). Prove that SL(n) is a submanifold of M(n) and thus is a Lie group. [HINT: Prove that 0 is the only critical value of det: $M(n) \rightarrow R$. In fact, if det $(A) \neq 0$, then show that det is already a submersion when restricted to the set $\{tA, t > 0\}$. Remark: This is really a special case of Exercise 5.]
 - (b) Check that the tangent space to SL(n) at the identity matrix consists of all matrices with trace equal to zero.
- 12. Prove that the set of all 2×2 matrices of rank 1 is a three-dimensional submanifold of $\mathbb{R}^4 = M(2)$. [HINT: Show that the determinant function is a submersion on the manifold of nonzero 2×2 matrices $M(2) \{0\}$.]
- 13. Prove that the set of $m \times n$ matrices of rank r is a submanifold of \mathbb{R}^{mn} of of codimension (m-r)(n-r). [HINT: Suppose, for simplicity, that an $m \times n$ matrix A has the form

$$A = \binom{r}{B \mid C} \left(\frac{B \mid C}{D \mid E} \right),$$

where the $r \times r$ matrix B is nonsingular. Postmultiply by the nonsingular matrix

$$\left(\begin{array}{c|c}I & -B^{-1}C\\\hline 0 & I\end{array}\right)$$

to prove that rank (A) = r if and only if $E - DB^{-1}C = 0$.

§5 Transversality

We have observed that the solutions of an equation f(x) = y form a smooth manifold, provided that y is a regular value of the map $f: X \to Y$. Consider, now, sets of points in X whose functional values are constrained, not necessarily to be a constant y, but to satisfy an arbitrary smooth condition. Thus assume Z to be a submanifold of Y, and examine the set of solutions of the relation $f(x) \in Z$. When can we be assured that this solution set, the preimage $f^{-1}(Z)$, is a tractable geometric object? This question will lead us to define a new differential property, an extension of the notion of regularity, which will become the major theme of the book.